Что такое размер кэша. На что влияет кэш процессора L1 L2 L3

Всем пользователям хорошо известны такие элементы компьютера, как процессор, отвечающий за обработку данных, а также оперативная память (ОЗУ или RAM), отвечающая за их хранение. Но далеко не все, наверное, знают, что существует и кэш-память процессора(Cache CPU), то есть оперативная память самого процессора (так называемая сверхоперативная память).

В чем же состоит причина, которая побудила разработчиков компьютеров использовать специальную память для процессора? Разве возможностей ОЗУ для компьютера недостаточно?

Действительно, долгое время персональные компьютеры обходились без какой-либо кэш-памяти. Но, как известно, процессор – это самое быстродействующее устройство персонального компьютера и его скорость росла с каждым новым поколением CPU. В настоящее время его скорость измеряется миллиардами операций в секунду. В то же время стандартная оперативная память не столь значительно увеличила свое быстродействие за время своей эволюции.

Вообще говоря, существуют две основные технологии микросхем памяти – статическая память и динамическая память. Не углубляясь в подробности их устройства, скажем лишь, что статическая память, в отличие от динамической, не требует регенерации; кроме того, в статической памяти для одного бита информации используется 4-8 транзисторов, в то время как в динамической – 1-2 транзистора. Соответственно динамическая память гораздо дешевле статической, но в то же время и намного медленнее. В настоящее время микросхемы ОЗУ изготавливаются на основе динамической памяти.

Примерная эволюция соотношения скорости работы процессоров и ОЗУ:

Таким образом, если бы процессор брал все время информацию из оперативной памяти, то ему пришлось бы ждать медлительную динамическую память, и он все время бы простаивал. В том же случае, если бы в качестве ОЗУ использовалась статическая память, то стоимость компьютера возросла бы в несколько раз.

Именно поэтому был разработан разумный компромисс. Основная часть ОЗУ так и осталась динамической, в то время как у процессора появилась своя быстрая кэш-память, основанная на микросхемах статической памяти. Ее объем сравнительно невелик – например, объем кэш-памяти второго уровня составляет всего несколько мегабайт. Впрочем, тут стоить вспомнить о том, что вся оперативная память первых компьютеров IBM PC составляла меньше 1 МБ.

Кроме того, на целесообразность внедрения технологии кэширования влияет еще и тот фактор, что разные приложения, находящиеся в оперативной памяти, по-разному нагружают процессор, и, как следствие, существует немало данных, требующих приоритетной обработки по сравнению с остальными.

История кэш-памяти

Строго говоря, до того, как кэш-память перебралась на персоналки, она уже несколько десятилетий успешно использовалась в суперкомпьютерах.

Впервые кэш-память объемом всего в 16 КБ появилась в ПК на базе процессора i80386. На сегодняшний день современные процессоры используют различные уровни кэша, от первого (самый быстрый кэш самого маленького объема – как правило, 128 КБ) до третьего (самый медленный кэш самого большого объема – до десятков МБ).

Сначала внешняя кэш-память процессора размещалась на отдельном чипе. Со временем, однако, это привело к тому, что шина, расположенная между кэшем и процессором, стала узким местом, замедляющим обмен данными. В современных микропроцессорах и первый, и второй уровни кэш-памяти находятся в самом ядре процессора.

Долгое время в процессорах существовали всего два уровня кэша, но в CPU Intel Itanium впервые появилась кэш-память третьего уровня, общая для всех ядер процессора. Существуют и разработки процессоров с четырехуровневым кэшем.

Архитектуры и принципы работы кэша

На сегодняшний день известны два основных типа организации кэш-памяти, которые берут свое начало от первых теоретических разработок в области кибернетики – принстонская и гарвардская архитектуры. Принстонская архитектура подразумевает единое пространство памяти для хранения данных и команд, а гарвардская – раздельное. Большинство процессоров персональных компьютеров линейки x86 использует раздельный тип кэш-памяти. Кроме того, в современных процессорах появился также третий тип кэш-памяти – так называемый буфер ассоциативной трансляции, предназначенный для ускорения преобразования адресов виртуальной памяти операционной системы в адреса физической памяти.

Упрощенно схему взаимодействия кэш-памяти и процессора можно описать следующим образом. Сначала происходит проверка наличия нужной процессору информации в самом быстром - кэше первого уровня, затем - в кэше второго уровня, и.т.д. Если же нужной информации в каком-либо уровне кэша не оказалось, то говорят об ошибке, или промахе кэша. Если информации в кэше нет вообще, то процессору приходится брать ее из ОЗУ или даже из внешней памяти (с жесткого диска).

Порядок поиска процессором информации в памяти:

Именно таким образом Процессор осуществляет поиск инфоромации

Для управления работой кэш-памяти и ее взаимодействия с вычислительными блоками процессора, а также ОЗУ существует специальный контроллер.

Схема организации взаимодействия ядра процессора, кэша и ОЗУ:

Кэш-контроллер является ключевым элементом связи процессора, ОЗУ и Кэш-памяти

Следует отметить, что кэширование данных – это сложный процесс, в ходе которого используется множество технологий и математических алгоритмов. Среди базовых понятий, применяющихся при кэшировании, можно выделить методы записи кэша и архитектуру ассоциативности кэш-памяти.

Методы записи кэша

Существует два основных метода записи информации в кэш-память:

  1. Метод write-back (обратная запись) – запись данных производится сначала в кэш, а затем, при наступлении определенных условий, и в ОЗУ.
  2. Метод write-through (сквозная запись) – запись данных производится одновременно в ОЗУ и в кэш.

Архитектура ассоциативности кэш-памяти

Архитектура ассоциативности кэша определяет способ, при помощи которого данные из ОЗУ отображаются в кэше. Существуют следующие основные варианты архитектуры ассоциативности кэширования:

  1. Кэш с прямым отображением – определенный участок кэша отвечает за определенный участок ОЗУ
  2. Полностью ассоциативный кэш – любой участок кэша может ассоциироваться с любым участком ОЗУ
  3. Смешанный кэш (наборно-ассоциативный)

На различных уровнях кэша обычно могут использоваться различные архитектуры ассоциативности кэша. Кэширование с прямым отображением ОЗУ является самым быстрым вариантом кэширования, поэтому эта архитектура обычно используется для кэшей большого объема. В свою очередь, полностью ассоциативный кэш обладает меньшим количеством ошибок кэширования (промахов).

Заключение

В этой статье вы познакомились с понятием кэш-памяти, архитектурой кэш-памяти и методами кэширования, узнали о том, как она влияет на производительность современного компьютера. Наличие кэш-памяти позволяет значительно оптимизировать работу процессора, уменьшить время его простоя, а, следовательно, и увеличить быстродействие всей системы.

Все процессоры с конца 90-х годов имеют внутреннюю кэш-память (или просто кэш). Кэш — это быстродействующая память, в которую переносятся команды и данные, непосредственно обрабатываемые процессором.

В современных процессорах встроена кэш-память двух уровней — первого (L1) и второго (L2). С содержимым кэша L1 процессор работает несколько быстрее, а объем кэша L2 обычно несколько больше. Обращение к кэш-памяти происходит без состояния ожидания, т.е. кэш-память первого уровня (встроенный кэш) работает на частоте процессора.

Это означает, что если данные, необходимые процессору, находятся в кэш-памяти, то задержек с обработкой не возникает. В противном случае процессор должен получить данные из основной памяти, что существенно уменьшает быстродействие системы.

Для того чтобы качественно разобраться с принципом работы кэшпамяти обоих уровней, рассмотрим на примере бытовую ситуацию.

Вы приходите в кафе пообедать ежедневно, в одно и то же время, и садитесь всегда за один и тот же столик. Всегда заказываете стандартный набор из трех блюд.

Официант бегает на кухню, повар их раскладывает на поднос и затем вам приносят заказ. И вот, скажем, на третий день официант, чтобы лишний раз не бегать на кухню, к назначенному времени встречает вас с уже готовым горячим обедом на подносе.

Вы не ждете заказ и сэкономили массу времени. Поднос с вашими блюдами — это и есть кэш первого уровня. Но на четвертый день вам вдруг захотелось добавить еще одно блюдо, допустим, десерт.

Хотя вас в назначенное время уже ждал поднос с заказом, но за десертом официанту все равно пришлось бежать на кухню.

А на пятый — снова меню из трех наименований. На шестой — опять десерт, но отличающийся от предыдущего. И официант, не зная, что вы из десерта захотите заказать (да и вообще не зная, будете ли вы что-либо заказывать), решается на следующий шаг: рядом с вашим столиком ставит шкафчик с несколькими наименованиями десерта.

И если вы изъявите желание, все под рукой, на кухню бежать не надо. Шкафчик с десертом — это кэш второго уровня.

От объема кэша L1 (от 16 до 128 Кбайт) и L2 (от 64 Кбайт до 512 Кбайт, в Pentium III Хеоп и AMD Opteron до 4 Мбайт) существенно зависит производительность процессора.

У процессоров Intel Pentium III и процессоров Celeron на его основе размер кэша L1 составляет 32 Кбайт. У Intel Pentium 4, а также на его базе Celeron и Хеоп-версий — всего 20 Кбайт. Процессоры AMD Duron, Athlon (включая ХР/МР) и Opteron, а также VIA СЗ содержат 128 Кбайт L1 кэша.

Современные двухъядерные процессоры имеют кэш первого уровня для каждого ядра в отдельности, поэтому иногда в описании кэша мы можем встретить цифру 128×2. Это означает, что каждое ядро процессора обладает 128 Кбайт кэш-памяти первого уровня.

Размер кэша L1 важен для получения высокой производительности в большинстве распространенных задач (офисные приложения, игры, большинство серверных приложений и т.п.). Особенно сильно его эффективность проявляется для поточных вычислений (например, обработка видеоизображения).

Это одна из причин того, что Pentium 4 относительно малоэффективен для большинства распространенных применений (хотя это компенсируется высокой тактовой частотой). Кэш L1 всегда работает (обменивается информацией с ядром процессора) на внутренней частоте процессора.

В отличие от него, кэш L2 в разных моделях процессоров работает с разной частотой (и соответственно производительностью). Начиная с Intel Pentium II во многих процессорах применялся кэш L2, работающий на частоте, вполовину меньшей, чем внутренняя частота процессора.

Такое решение использовано в устаревших процессорах Intel Pentium III (до 550 МГц) и устаревших AMD Athlon (в некоторых из них внутренний кэш L2 работал на трети частоты ядра процессора). Объем кэша L2 также различен для разных процессоров.

В устаревших, а также некоторых более новых процессорах Intel Pentium III объем кэша L2 составляет 512 Кбайт, в остальных Pentium III — 256 Кбайт. Процессор Intel Celeron на основе Pentium III выпускался с 128 и 256 Кбайт кэша L2, а на основе Pentium 4 — только со 128 Кбайт. В различных вариантах Xeon-версии Intel Pentium 4 присутствует до 4 Мбайт кэш-памяти L2.

В новых процессорах Pentium 4 (некоторые серии с частотой 2000 МГц и все — для частот выше) имеется 512 Кбайт кэша L2, в остальных Pentium 4 -256 Кбайт. В процессорах Хеоп (на основе Pentium 4) бывает 256 или 512 Кбайт кэша L2.

Кроме того, в них присутствует еще кэш-память третьего уровня L3. Интегрированная кэш-память L3 в сочетании с быстрой системной шиной формирует высокоскоростной канал обмена данными с системной памятью.

Как правило, кэш-памятью третьего уровня L3 комплектуются только процессоры для серверных решений или специальные модели «настольных» процессоров. Кэш-памятью L3 обладают, например, такие линейки процессоров, как Xeon DP, Itanium 2, Xeon MP.

Процессор AMD Duron имеет 128 Кбайт кэша L1 и 64 Кбайт кэша L2. В процессорах Athlon (кроме наиболее старых), Athlon MP и большинстве вариантов Athlon ХР присутствует 128 Кбайт кэша L1 и 256 Кбайт кэша L2, а в новейших Athlon ХР (2500+, 2800+, 3000+ и выше) — 512 Кбайт кэша L2. AMD Opteron содержит 1 Мбайт кэш-памяти L2.

Последние модели процессоров Intel Pentium D, Intel Pentium M, Intel Core 2 Duo выпускаются с 6 Мбайт кэш-памяти L2, a Core 2 Quad — 12 Мбайт кэш-памяти L2.

Последний на момент написания данной книги процессор фирмы Intel Core i7 обладает 64 Кбайт кэш-памяти L1 для каждого из 4 ядер, а также 256 Кбайт памяти L2 также для каждого ядра. Помимо кэш памяти первого и второго уровней процессор обладает и общей для всех ядер кэш-памятью третьего уровня, равной 8 Мбайт.

Для процессоров, у которых возможен разный размер кэша L2 (или в случае Intel Xeon MP — L3) у одной и той же модели, этот размер должен быть указан при продаже (от него, разумеется, зависит цена процессора). Если процессор продается в «коробочной» упаковке (поставка In-Box), на ней обычно указывается размер кэш-памяти.

Для обычных пользовательских задач (в том числе игр) важнее скорость кэша L2, чем его объем; для серверных задач, наоборот, важнее объем. Наиболее продуктивные серверы, особенно с большим объемом оперативной памяти (несколько гигабайт), требуют максимального объема и максимальной скорости кэша L2.

Непревзойденными по этим параметрам остаются Хеоп-версии процессоров Pentium III. (Процессор Xeon MP оказывается все же более производительны в серверных задачах, чем Pentium III Xeon, за счет более высокой тактовой частоты самого процессора и шины обмена информацией с памятью.) Из изложенного выше сделаем вывод: кэш-память улучшает взаимодействие между быстрым процессором и более медленной оперативной памятью, а также позволяет минимизировать периоды ожидания, возникающие при обработке данных. Решающую роль в этом играет кэш-память второго уровня, расположенная в кристалле процессора.

Одним из немаловажных факторов повышающих производительность процессора, является наличие кэш-памяти, а точнее её объём, скорость доступа и распределение по уровням.

Уже достаточно давно практически все процессоры оснащаются данным типом памяти, что ещё раз доказывает полезность её наличия. В данной статье, мы поговорим о структуре, уровнях и практическом назначении кэш-памяти, как об очень немаловажной характеристике процессора .

Что такое кэш-память и её структура

Кэш-память – это сверхбыстрая память используемая процессором, для временного хранения данных, которые наиболее часто используются. Вот так, вкратце, можно описать данный тип памяти.

Кэш-память построена на триггерах, которые, в свою очередь, состоят из транзисторов. Группа транзисторов занимает гораздо больше места, нежели те же самые конденсаторы, из которых состоит оперативная память . Это тянет за собой множество трудностей в производстве, а также ограничения в объёмах. Именно поэтому кэш память является очень дорогой памятью, при этом обладая ничтожными объёмами. Но из такой структуры, вытекает главное преимущество такой памяти – скорость. Так как триггеры не нуждаются в регенерации, а время задержки вентиля, на которых они собраны, невелико, то время переключения триггера из одного состояния в другое происходит очень быстро. Это и позволяет кэш-памяти работать на таких же частотах, что и современные процессоры.

Также, немаловажным фактором является размещение кэш-памяти. Размещена она, на самом кристалле процессора, что значительно уменьшает время доступа к ней. Ранее, кэш память некоторых уровней, размещалась за пределами кристалла процессора, на специальной микросхеме SRAM где-то на просторах материнской платы. Сейчас же, практически у всех процессоров, кэш-память размещена на кристалле процессора.


Для чего нужна кэш-память процессора?

Как уже упоминалось выше, главное назначение кэш-памяти – это хранение данных, которые часто используются процессором. Кэш является буфером, в который загружаются данные, и, несмотря на его небольшой объём, (около 4-16 Мбайт) в современных процессорах , он дает значительный прирост производительности в любых приложениях.

Чтобы лучше понять необходимость кэш-памяти, давайте представим себе организацию памяти компьютера в виде офиса. Оперативная память будет являть собою шкаф с папками, к которым периодически обращается бухгалтер, чтобы извлечь большие блоки данных (то есть папки). А стол, будет являться кэш-памятью.

Есть такие элементы, которые размещены на столе бухгалтера, к которым он обращается в течение часа по несколько раз. Например, это могут быть номера телефонов, какие-то примеры документов. Данные виды информации находятся прямо на столе, что, в свою очередь,увеличивает скорость доступа к ним.

Точно так же, данные могут добавиться из тех больших блоков данных (папок), на стол, для быстрого использования, к примеру, какой-либо документ. Когда этот документ становится не нужным, его помещают назад в шкаф (в оперативную память), тем самым очищая стол (кэш-память) и освобождая этот стол для новых документов, которые будут использоваться в последующий отрезок времени.

Также и с кэш-памятью, если есть какие-то данные, к которым вероятнее всего будет повторное обращение, то эти данные из оперативной памяти, подгружаются в кэш-память. Очень часто, это происходит с совместной загрузкой тех данных, которые вероятнее всего, будут использоваться после текущих данных. То есть, здесь присутствует наличие предположений о том, что же будет использовано «после». Вот такие непростые принципы функционирования.

Уровни кэш-памяти процессора

Современные процессоры, оснащены кэшем, который состоит, зачастую из 2–ух или 3-ёх уровней. Конечно же, бывают и исключения, но зачастую это именно так.

В общем, могут быть такие уровни: L1 (первый уровень), L2 (второй уровень), L3 (третий уровень). Теперь немного подробнее по каждому из них:

Кэш первого уровня (L1) – наиболее быстрый уровень кэш-памяти, который работает напрямую с ядром процессора, благодаря этому плотному взаимодействию, данный уровень обладает наименьшим временем доступа и работает на частотах близких процессору. Является буфером между процессором и кэш-памятью второго уровня.

Мы будем рассматривать объёмы на процессоре высокого уровня производительности Intel Core i7-3770K. Данный процессор оснащен 4х32 Кб кэш-памяти первого уровня 4 x 32 КБ = 128 Кб. (на каждое ядро по 32 КБ)

Кэш второго уровня (L2) – второй уровень более масштабный, нежели первый, но в результате, обладает меньшими «скоростными характеристиками». Соответственно, служит буфером между уровнем L1 и L3. Если обратиться снова к нашему примеру Core i7-3770 K, то здесь объём кэш-памяти L2 составляет 4х256 Кб = 1 Мб.

Кэш третьего уровня (L3) – третий уровень, опять же, более медленный, нежели два предыдущих. Но всё равно он гораздо быстрее, нежели оперативная память. Объём кэша L3 в i7-3770K составляет 8 Мбайт. Если два предыдущих уровня разделяются на каждое ядро, то данный уровень является общим для всего процессора. Показатель довольно солидный, но не заоблачный. Так как, к примеру, у процессоров Extreme-серии по типу i7-3960X, он равен 15Мб, а у некоторых новых процессоров Xeon, более 20.

Компьютерные процессоры сделали значительный рывок в развитии за последние несколько лет. Размер транзисторов с каждым годом уменьшается, а производительность растет. При этом закон Мура уже становится неактуальным. Что касается производительности процессоров, то следует учитывать, не только количество транзисторов и частоту, но и объем кэша.

Возможно, вы уже слышали о кэш памяти когда искали информацию о процессорах. Но, обычно, мы не обращаем много внимания на эти цифры, они даже не сильно выделяются в рекламе процессоров. Давайте разберемся на что влияет кэш процессора, какие виды кэша бывают и как все это работает.

Если говорить простыми словами, то кэш процессора это просто очень быстрая память. Как вы уже знаете, у компьютера есть несколько видов памяти. Это постоянная память, которая используется для хранения данных, операционной системы и программ, например, SSD или жесткий диск. Также в компьютере используется оперативная память. Это память со случайным доступом, которая работает намного быстрее, по сравнению с постоянной. И наконец у процессора есть ещё более быстрые блоки памяти, которые вместе называются кэшем.

Если представить память компьютера в виде иерархии по её скорости, кэш будет на вершине этой иерархии. К тому же он ближе всего к вычислительным ядрам, так как является частью процессора.

Кэш память процессора представляет из себя статическую память (SRAM) и предназначен для ускорения работы с ОЗУ. В отличие от динамической оперативной памяти (DRAM), здесь можно хранить данные без постоянного обновления.

Как работает кэш процессора?

Как вы, возможно, уже знаете, программа — это набор инструкций, которые выполняет процессор. Когда вы запускаете программу, компьютеру надо перенести эти инструкции из постоянной памяти в процессору. И здесь вступает в силу иерархия памяти. Сначала данные загружаются в оперативную память, а потом передаются в процессор.

В наши дни процессор может обрабатывать огромное количество инструкций в секунду. Чтобы по максимуму использовать свои возможности, процессору необходима супер быстрая память. Поэтому был разработан кэш.

Контроллер памяти процессора выполняет работу по получению данных из ОЗУ и отправке их в кэш. В зависимости от процессора, используемого в вашей системе, этот контроллер может быть размещен в северном мосту материнской плате или в самом процессоре. Также кэш хранит результаты выполнения инструкций в процессоре. Кроме того, в самом кэше процессора тоже есть своя иерархия.

Уровни кэша процессора — L1, L2 и L3

Веся кэш память процессора разделена на три уровни: L1, L2 и L3. Эта иерархия тоже основана на скорости работы кэша, а также на его объеме.

  • L1 Cache (кэш первого уровня) — это максимально быстрый тип кэша в процессоре. С точки зрения приоритета доступа, этот кэш содержит те данные, которые могут понадобиться программе для выполнения определенной инструкции;
  • L2 Cache (кэш второго уровня процессора) — медленнее, по сравнению L1, но больше по размеру. Его объем может быть от 256 килобайт до восьми мегабайт. Кэш L2 содержит данные, которые, возможно, понадобятся процессору в будущем. В большинстве современных процессоров кэш L1 и L2 присутствуют на самих ядрах процессора, причём каждое ядро получает свой собственный кэш;
  • L3 Cache (кэш третьего уровня) — это самый большой и самый медленный кэш. Его размер может быть в районе от 4 до 50 мегабайт. В современных CPU на кристалле выделяется отдельное место под кэш L3.

На данный момент это все уровни кэша процессора, компания Intel пыталась создать кэш уровня L4, однако, пока эта технология не прижилась.

Для чего нужен кэш в процессоре?

Пришло время ответить на главный вопрос этой статьи, на что влияет кэш процессора? Данные поступают из ОЗУ в кэш L3, затем в L2, а потом в L1. Когда процессору нужны данные для выполнения операции, он пытается их найти в кэше L1 и если находит, то такая ситуация называется попаданием в кэш. В противном случае поиск продолжается в кэше L2 и L3. Если и теперь данные найти не удалось, выполняется запрос к оперативной памяти.

Теперь мы знаем, что кэш разработан для ускорения передачи информации между оперативной памятью и процессором. Время, необходимое для того чтобы получить данные из памяти называется задержкой (Latency). Кэш L1 имеет самую низкую задержку, поэтому он самый быстрый, кэш L3 — самую высокую. Когда данных в кэше нет, мы сталкиваемся с еще более высокой задержкой, так как процессору надо обращаться к памяти.

Раньше, в конструкции процессоров кєши L2 и L3 были были вынесены за пределы процессора, что приводило к высоким задержкам. Однако уменьшение техпроцесса, по которому изготавливаются процессоры позволяет разместить миллиарды транизисторов в пространстве, намного меньшем, чем раньше. Как результат, освободилось место, чтобы разместить кэш как можно ближе к ядрам, что ещё больше уменьшает задержку.

Как кэш влияет на производительность?

Влияние кэша на произвоидтельность компьютера напрямую зависит от его эффективности и количества попаданий в кэш. Ситуации, когда данных в кэше не оказывается очень сильно снижают общую производительность.

Представьте, что процессор загружает данные из кэша L1 100 раз подряд. Если процент попаданий в кэш будет 100%, процессору понадобиться 100 наносекунд чтобы получить эти данные. Однако, как только процент попаданий уменьшится до 99%, процессору нужно будет извлечь данные из кэша L2, а там уже задержка 10 наносекунд. Получится 99 наносекунд на 99 запросов и 10 наносекунд на 1 запрос. Поэтому уменьшение процента попаданий в кэш на 1% снижает производительность процессора 10%.

В реальном времени процент попаданий в кэш находится между 95 и 97%. Но как вы понимаете, разница в производительности между этими показателями не в 2%, а в 14%. Имейте в виду, что в примере, мы предполагаем, что прощенные данные всегда есть в кэше уровня L2, в реальной жизни данные могут быть удалены из кэша, это означает, что их придется получать из оперативной памяти, у которой задержка 80-120 наносекунд. Здесь разница между 95 и 97 процентами ещё более значительная.

Низкая производительность кэша в процессорах AMD Bulldozer и Piledriver была одной из основных причин, почему они проигрывали процессорам Intel. В этих процессорах кэш L1 разделялся между несколькими ядрами, что делало его очень не эффективным. В современных процессорах Ryzen такой проблемы нет.

Можно сделать вывод, чем больше объем кэша, тем выше производительность, поскольку процессор сможет получить в большем количестве случаев нужные ему данные быстрее. Однако, стоит обращать внимание не только на объем кэша процессора, но и на его архитектуру.

Выводы

Теперь вы знаете за что отвечает кэш процессора и как он работает. Дизайн кэша постоянно развивается, а память становится быстрее и дешевле. Компании AMD и Intel уже провели множество экспериментов с кэшем, а в Intel даже пытались использовать кэш уровня L4. Рынок процессоров развивается куда быстрее, чем когда-либо. Архитектура кэша будет идти в ногу с постоянно растущей мощностью процессоров.

Кроме того, многое делается для устранения узких мест, которые есть у современных компьютеров. Уменьшение задержки работы с памятью одна из самых важных частей этой работы. Будущее выглядит очень многообещающе.

Похожие записи.

Почти все разработчики знают, что кэш процессора - это такая маленькая, но быстрая память, в которой хранятся данные из недавно посещённых областей памяти - определение краткое и довольно точное. Тем не менее, знание «скучных» подробностей относительно механизмов работы кэша необходимо для понимания факторов влияющих на производительность кода.

В этой статье мы рассмотрим ряд примеров иллюстрирующих различные особенности работы кэшей и их влияние на производительность. Примеры будут на C#, выбор языка и платформы не так сильно влияет на оценку производительности и конечные выводы. Естественно, в разумных пределах, если вы выберите язык, в котором чтение значения из массива равносильно обращению к хеш-таблице, никаких результатов пригодных к интерпретации вы не получите. Курсивом идут примечания переводчика.

Habracut - - -

Пример 1: доступ к памяти и производительность

Как вы думаете, насколько второй цикл быстрее первого?
int arr = new int ;

// первый
for (int i = 0; i < arr.Length; i++) arr[i] *= 3;

// второй
for (int i = 0; i < arr.Length; i += 16) arr[i] *= 3;


Первый цикл умножает все значения массива на 3, второй цикл только каждое шестнадцатое значение. Второй цикл совершает только 6% работы первого цикла, но на современных машинах оба цикла выполняются примерно за равное время: 80 мс и 78 мс соответственно (на моей машине).

Разгадка проста - доступ к памяти. Скорость работы этих циклов в первую очередь определяется скоростью работы подсистемы памяти, а не скоростью целочисленного умножения. Как мы увидим в следующем примере, количество обращений к оперативной памяти одинаково и в первом и во втором случае.

Пример 2: влияние строк кэша

Копнём глубже - попробуем другие значения шага, не только 1 и 16:
for (int i = 0; i < arr.Length; i += K /* шаг */ ) arr[i] *= 3;

Вот время работы этого цикла для различных значений шага K:

Обратите внимание, при значениях шага от 1 до 16 время работы практически не изменяется. Но при значениях больше 16, время работы уменьшается примерно вдвое каждый раз когда мы увеличиваем шаг в два раза. Это не означает, что цикл каким-то магическим образом начинает работать быстрее, просто количество итераций при этом так же уменьшается. Ключевой момент - одинаковое время работы при значениях шага от 1 до 16.

Причина этого в том, что современные процессоры осуществляют доступ к памяти не побайтно, а небольшими блоками, которые называют строками кэша. Обычно размер строки составляет 64 байта. Когда вы читаете какое-либо значение из памяти, в кэш попадает как минимум одна строка кэша. Последующий доступ к какому-либо значению из этой строки происходит очень быстро.

Из-за того, что 16 значений типа int занимают 64 байта, циклы с шагами от 1 до 16 обращаются к одинаковому количеству строк кэша, точнее говоря, ко всем строкам кэша массива. При шаге 32, обращение происходит к каждой второй строке, при шаге 64, к каждой четвёртой.

Понимание этого очень важно для некоторых способов оптимизации. От места расположения данных в памяти зависит число обращений к ней. Например, из-за невыровненных данных может потребоваться два обращения к оперативной памяти, вместо одного. Как мы выяснили выше, скорость работы при этом будет в два раза ниже.

Пример 3: размеры кэшей первого и второго уровня (L1 и L2)

Современные процессоры, как правило, имеют два или три уровня кэшей, обычно их называют L1, L2 и L3. Для того, чтобы узнать размеры кэшей различных уровней, можно воспользоваться утилитой CoreInfo или функцией Windows API GetLogicalProcessorInfo . Оба способа так же предоставляют информацию о размере строки кэша для каждого уровня.

На моей машине CoreInfo сообщает о кэшах данных L1 объёмом по 32 Кбайт, кэшах инструкций L1 объёмом по 32 Кбайт и кэшах данных L2 объёмом по 4 Мбайт. Каждое ядро имеет свои персональные кэши L1, кэши L2 общие для каждой пары ядер:

Logical Processor to Cache Map: *--- Data Cache 0, Level 1, 32 KB, Assoc 8, LineSize 64 *--- Instruction Cache 0, Level 1, 32 KB, Assoc 8, LineSize 64 -*-- Data Cache 1, Level 1, 32 KB, Assoc 8, LineSize 64 -*-- Instruction Cache 1, Level 1, 32 KB, Assoc 8, LineSize 64 **-- Unified Cache 0, Level 2, 4 MB, Assoc 16, LineSize 64 --*- Data Cache 2, Level 1, 32 KB, Assoc 8, LineSize 64 --*- Instruction Cache 2, Level 1, 32 KB, Assoc 8, LineSize 64 ---* Data Cache 3, Level 1, 32 KB, Assoc 8, LineSize 64 ---* Instruction Cache 3, Level 1, 32 KB, Assoc 8, LineSize 64 --** Unified Cache 1, Level 2, 4 MB, Assoc 16, LineSize 64
Проверим эту информацию экспериментально. Для этого, пройдёмся по нашему массиву инкрементируя каждое 16-ое значение - простой способ изменить данные в каждой строке кэша. При достижении конца, возвращаемся к началу. Проверим различные размеры массива, мы должны увидеть падение производительности когда массив перестаёт помещаться в кэши разных уровней.

Код такой:

int steps = 64 * 1024 * 1024; // количество итераций
int lengthMod = arr.Length - 1; // размер массива -- степень двойки

for (int i = 0; i < steps; i++)
{
// x & lengthMod = x % arr.Length, ибо степени двойки
arr[(i * 16) & lengthMod]++;
}


Результаты тестов:

На моей машине заметны падения производительности после 32 Кбайт и 4 Мбайт - это и есть размеры кэшей L1 и L2.

Пример 4: параллелизм инструкций

Теперь давайте взглянем на кое-что другое. По вашему мнению, какой из этих двух циклов выполнится быстрее?
int steps = 256 * 1024 * 1024;
int a = new int ;

// первый
for (int i = 0; i < steps; i++) { a++; a++; }

// второй
for (int i = 0; i < steps; i++) { a++; a++; }


Оказывается, второй цикл выполняется почти в два раза быстрее, по крайней мере, на всех протестированных мной машинах. Почему? Потому, что команды внутри циклов имеют разные зависимости по данным. Команды первого имеют следующую цепочку зависимостей:

Во втором цикле зависимости такие:

Функциональные части современных процессоров способны выполнять определённое число некоторых операций одновременно, как правило, не очень большое число. Например, возможен параллельный доступ к данным из кэша L1 по двум адресам, так же возможно одновременное выполнение двух простых арифметических команд. В первом цикле процессор не может задействовать эти возможности, но может во втором.

Пример 5: ассоциативность кэша

Один из ключевых вопросов, на который необходимо дать ответ при проектировании кэша - могут ли данные из определённой области памяти храниться в любых ячейках кэша или только в некоторых из них. Три возможных решения:
  1. Кэш прямого отображения , данные каждой строки кэша в оперативной памяти хранятся только в одной заранее определённой ячейке кэша. Простейший способ вычисления отображения: индекс_строки_в_памяти % количество_ячеек_кэша. Две строки, отображённые на одну и ту же ячейку, не могут находится в кэше одновременно.
  2. N-входовый частично-ассоциативный кэш , каждая строка может храниться в N различных ячейках кэша. Например, в 16-входовом кэше строка может храниться в одной из 16-ти ячеек составляющих группу. Обычно, строки с равными младшими битами индексов разделяют одну группу.
  3. Полностью ассоциативный кэш , любая строка может быть сохранена в любую ячейку кэша. Решение эквивалентно хеш-таблице по своему поведению.
Кэши прямого отображения подвержены конфликтам, например, когда две строки соревнуются за одну ячейку, поочерёдно вытесняя друг-друга из кэша, эффективность очень низка. С другой стороны, полностью ассоциативные кэши, хотя и лишены этого недостатка, очень сложны и дороги в реализации. Частично-ассоциативные кэши - типичный компромисс между сложностью реализации и эффективностью.

К примеру, на моей машине кэш L2 размером в 4 Мбайт является 16-входовым частично-ассоциативным кэшем. Вся оперативная память разделена на множества строк по младшим битам их индексов, строки из каждого множества соревнуются за одну группу из 16 ячеек кэша L2.

Так как кэш L2 имеет 65 536 ячеек (4 * 2 20 / 64) и каждая группа состоит из 16 ячеек, всего мы имеем 4 096 групп. Таким образом, младшие 12 битов индекса строки определяют к какой группе относится эта строка (2 12 = 4 096). В результате, строки с адресами кратными 262 144 (4 096 * 64) разделяют одну и ту же группу из 16-ти ячеек и соревнуются за место в ней.

Чтобы эффекты ассоциативности проявили себя, нам необходимо постоянно обращаться к большому количеству строк из одной группы, например, используя следующий код:

public static long UpdateEveryKthByte(byte arr, int K)
{
const int rep = 1024 * 1024; // количество итераций

Stopwatch sw = Stopwatch.StartNew();

int p = 0;
for (int i = 0; i < rep; i++)
{
arr[p]++;

P += K; if (p >= arr.Length) p = 0;
}

Sw.Stop();
return sw.ElapsedMilliseconds;
}


Метод инкрементирует каждый K-ый элемент массива. По достижении конца, начинаем заново. После довольно большого количества итераций (2 20), останавливаемся. Я сделал прогоны для различных размеров массива и значений шага K. Результаты (синий - большое время работы, белый - маленькое):

Синим областям соответствуют те случаи, когда при постоянном изменении данных кэш не в состоянии вместить все требуемые данные одновременно . Яркий синий цвет говорит о времени работы порядка 80 мс, почти белый - 10 мс.

Разберёмся с синими областями:

  1. Почему появляются вертикальные линии? Вертикальные линии соответствуют значениям шага при которых осуществляется доступ к слишком большому числу строк (больше 16-ти) из одной группы. Для таких значений, 16-входовый кэш моей машины не может вместить все необходимые данные.

    Некоторые из плохих значений шага - степени двойки: 256 и 512. Для примера рассмотрим шаг 512 и массив в 8 Мбайт. При этом шаге, в массиве имеются 32 участка (8 * 2 20 / 262 144), которые ведут борьбу друг с другом за ячейки в 512-ти группах кэша (262 144 / 512). Участка 32, а ячеек в кэше под каждую группу только 16, поэтому места на всех не хватает.

    Другие значения шага, не являющиеся степенями двойки, просто невезучие, что вызывает большое количество обращений к одинаковым группам кэша, а так же приводит к появлению вертикальных синих линий на рисунке. На этом месте любителям теории чисел предлагается задуматься.

  2. Почему вертикальные линии обрываются на границе в 4 Мбайт? При размере массива в 4 Мбайт или меньше, 16-входовый кэш ведёт себя так же как и полностью ассоциативный, то есть может вместить все данные массива без конфликтов. Имеется не более 16-ти областей ведущих борьбу за одну группу кэша (262 144 * 16 = 4 * 2 20 = 4 Мбайт).
  3. Почему слева вверху находится большой синий треугольник? Потому, что при маленьком шаге и большом массиве кэш не в состоянии уместить все необходимые данные. Степень ассоциативности кэша играет тут второстепенную роль, ограничение связано с размером кэша L2.

    Например, при размере массива в 16 Мбайт и шаге 128, мы обращаемся к каждому 128-му байту, таким образом, модифицируя каждую вторую строку кэша массива. Чтобы сохранить каждую вторую строку в кэше, необходим его объём в 8 Мбайт, но на моей машине есть только 4 Мбайт.

    Даже если бы кэш был полностью ассоциативным, это не позволило бы сохранить в нём 8 Мбайт данных. Заметьте, что в уже рассмотренном примере с шагом 512 и размером массива 8 Мбайт, нам необходим только 1 Мбайт кэша, чтобы сохранить все нужные данные, но это невозможно сделать из-за недостаточной ассоциативности кэша.

  4. Почему левая сторона треугольника постепенно набирает свою интенсивность? Максимум интенсивности приходится на значение шага в 64 байта, что равно размеру строки кэша. Как мы увидели в первом и во втором примере, последовательный доступ к одной и той же строке практически ничего не стоит. Скажем, при шаге в 16 байт, мы имеем четыре обращения к памяти по цене одного.

    Так как количество итераций равно в нашем тесте при любом значении шага, то более дешёвый шаг в результате даёт меньшее время работы.

Обнаруженные эффекты сохраняются и при больших значениях параметров:

Ассоциативность кэша - интересная штука, которая может проявить себя при определённых условиях. В отличие от остальных рассмотренных в этой статье проблем, она не является настолько серьёзной. Определённо, это не то, что требует постоянного внимания при написании программ.

Пример 6: ложное разделение кэша

На многоядерных машинах можно столкнуться с другой проблемой - согласование кэшей. Ядра процессора имеют частично или полностью раздельные кэши. На моей машине кэши L1 раздельны (как и обычно), так же имеются два кэша L2, общие для каждой пары ядер. Детали могут различаться, но в целом современные многоядерные процессоры имеют многоуровневые иерархические кэши. Причём самые быстрые, но и самые маленькие кэши, принадлежат индивидуальным ядрам.

Когда одно из ядер модифицирует значение в своём кэше, другие ядра больше не могут использовать старое значение. Значение в кэшах других ядер должно быть обновлено. Более того, должна быть обновлена полностью вся строка кэша , так как кэши оперируют данными на уровне строк.

Продемонстрируем эту проблему на следующем коде:

private static int s_counter = new int ;

private void UpdateCounter(int position)
{
for (int j = 0; j < 100000000; j++)
{
s_counter = s_counter + 3;
}
}


Если на своей четырёхядерной машине я вызову этот метод с параметрами 0, 1, 2, 3 одновременно из четырёх потоков, то время работы составит 4.3 секунды . Но если я вызову метод с параметрами 16, 32, 48, 64, то время работы составит только 0.28 секунды .

Почему? В первом случае, все четыре значения, обрабатываемые потоками в каждый момент времени, с большой вероятностью попадают в одну строку кэша. Каждый раз когда одно ядро увеличивает очередное значение, оно помечает ячейки кэша, содержащие это значение в других ядрах, как невалидные. После этой операции, все остальные ядра должны будут закэшировать строку заново. Это делает механизм кэширования неработоспособным, убивая производительность.

Пример 7: сложность железа

Даже теперь, когда принципы работы кэшей для вас не секрет, железо по-прежнему будет преподносить вам сюрпризы. Процессоры отличаются друг от друга методами оптимизации, эвристиками и прочими тонкостями реализации.

Кэш L1 некоторых процессоров может осуществлять параллельный доступ к двум ячейкам, если они относятся к разным группам, но если они относятся к одной, только последовательно. Насколько мне известно, некоторые даже могут осуществлять параллельный доступ к разным четвертинкам одной ячейки.

Процессоры могут удивить вас хитрыми оптимизациями. Например, код из предыдущего примера про ложное разделение кэша не работает на моём домашнем компьютере так, как задумывалось - в простейших случаях процессор может оптимизировать работу и уменьшить негативные эффекты. Если код немного модифицировать, всё встаёт на свои места.

Вот другой пример странных причуд железа:

private static int A, B, C, D, E, F, G;

private static void Weirdness()
{
for (int i = 0; i < 200000000; i++)
{
<какой-то код>
}
}


Если вместо <какой-то код> подставить три разных варианта, можно получить следующие результаты:

Инкрементирование полей A, B, C, D занимает больше времени, чем инкрементирование полей A, C, E, G. Что ещё страннее, инкрементирование полей A и C занимает больше времени, чем полей A, C и E, G. Не знаю точно каковы причины этого, но возможно они связаны с банками памяти (да-да, с обычными трёхлитровыми сберегательными банками памяти, а не то, что вы подумали ). Имеющих соображения на этот счёт, прошу высказываться в комментариях.

У меня на машине вышеописанного не наблюдается, тем не менее, иногда бывают аномально плохие результаты - скорее всего, планировщик задач вносит свои «коррективы».

Из этого примера можно вынести следующий урок: очень сложно полностью предсказать поведение железа. Да, можно предсказать многое, но необходимо постоянно подтверждать свои предсказания с помощью измерений и тестирования.

Заключение

Надеюсь, что всё рассмотренное помогло вам понять устройство кэшей процессоров. Теперь вы можете использовать полученные знания на практике для оптимизации своего кода.