Синхронизация в сетях нового поколения: три пути решения проблем. Принципы построения системы тактовой сетевой синхронизации Синхронизация в мобильных сетях

Синхронизация цифровых сетей – основа их нормальной работы. При восстановлении сигнала важна не только его форма, но и момент его детектирования приемником. Поэтому "часы" на любом из узлов транспортной сети должны показывать "одно и то же время" – т.е. работать синхронно, с точностью до пикосекунды. Как этого добиться без чрезмерно больших затрат, если узлы разнесены порой на тысячи километров?


ОСНОВНЫЕ ТИПЫ СИНХРОНИЗАЦИИ И СВЯЗАННЫЕ С НИМИ ПОНЯТИЯ


Проблемы синхронизации цифровых сетей – это часть общей задачи синхронизации цифровых последовательностей, однако они имеют и некоторые специфические особенности. Две сопоставляемые цифровые последовательности могут быть синхронизированы по трем параметрам:

  • по времени прихода на узел сети t – временная синхронизация;
  • по начальной фазе синхронизируемого блока – фазовая синхронизация;
  • по длительности интервала (t) или частоте следования импульсов f = 1/t – частотная синхронизация.

Задача временной синхронизации глобальна, но решается просто, если использовать службу единого скоординированного времени (UTC) или единый источник синхронизации, например навигационные системы Loran-C и GPS/ГЛОНАСС. Фазовая синхронизация актуальна только для конкретного физического устройства и достаточно просто обеспечивается системами фазовой автоподстройки, позволяющими привязывать начальную фазу сигнала к началу такта локального тактового генератора.

Проблема частотной синхронизации – наиболее сложная, поскольку она глобальна и локальна одновременно (она актуальна как для всей транспортной сети, так и для любого конкретного мультиплексора или коммутатора в точке восстановления). Подавляющее большинство проблем синхронизации относится именно к частотной синхронизации, поэтому далее будем рассматривать только ее.

В цифровых системах с импульсно-кодовой модуляцией (ИКМ), использующих плезиохронную и синхронную цифровую иерархию (ПЦИ/PDH, СЦИ/SDH), основной вид синхронизации – тактовая, она определяет остальные (по фреймам и мультифреймам) виды синхронизации. Проблемы синхронизации возникают, когда несколько простых локальных сетей (узлы имеют топологию "звезды" и настолько близки друг к другу, что временем распространения сигналов между ними можно пренебречь), причем каждая со своим источником тактовой сетевой синхронизации (ТСС), объединяются в сложную сеть передачи.

Если на передающем и принимающем узлах частоты источников тактовой синхронизации (хронирующих источников, или таймеров) не совпадают, за определенное время накапливается ошибка временного интервала (ОВИ/TIE), равная разности момента прихода (tп) n-го импульса цифровой последовательности и момента генерации (tг) n-го импульса источником тактовой синхронизации принимающего узла. Частота местного источника ТСС может быть выше или ниже частоты принимаемой последовательности. В зависимости от этого, когда ОВИ становится соизмеримой с длиной тактового интервала, происходит либо пропадание одного импульса, либо формирование лишнего – что приводит к срыву синхронизации. Данное явление называют проскальзыванием или слипом (slip). При передаче аудиосигнала слипы воспринимаются как щелчки – до определенного уровня это терпимо. Однако при передаче данных они приводят к нарушению связи.

Качество синхронизации можно оценить периодом времени, за который накопленная ОВИ приводит к срыву тактовой синхронизации, или частотой проскальзываний в единицу времени. Учитывая, что отдельные участки сложной сети могут синхронизироваться от источников различной точности, важно определить предельно допустимые значения частоты слипов. В соответствии с руководящими техническими материалами Министерства связи (РТМ МС) РФ все системы ТСС классифицируются по четырем типам: синхронный – слипов фактически нет; псевдосинхронный – допускается Ј1 слип/70 дней; плезиохронный – Ј1 слип/17 часов и асинхронный – Ј1 слип/7 с.


ОСНОВНЫЕ СХЕМЫ УПРАВЛЕНИЯ В СЕТЯХ ТСС


Общие вопросы синхронизации и основные определения описаны в рекомендации ITU-T G.810, они актуальны для сетей как с PDH, так и с SDH. Цель тактовой синхронизации – передать с требуемой точностью информацию о длине единичного тактового интервала t0 (или о тактовой частоте f0) всем устройствам/узлам одной сети или всем взаимодействующим сетям. Компактную региональную сеть можно синхронизировать одним высокоточным таймером (первичным) в центральном узле сети, транслируя его такты на другие узлы сети (как в службе времени большого города). Для этого необходим не только первичный таймер, но и надежная система распределения сигнала синхронизации (СРСС) на все узлы сети.

Если сеть глобальная, то для синхронизации ее можно разделить на несколько региональных сетей, каждая – со своим первичным таймером и СРСС. Существуют два основных метода тактовой синхронизации : иерархический метод принудительной синхронизации с парами таймеров ведущий-ведомый, и неиерархический метод взаимной синхронизации. На практике распространен только первый метод. В качестве единственного он принят и на Взаимоувязанной сети связи (ВСС) РФ .

СРСС строится по трем альтернативным схемам:

  • одноуровневая звезда – все узлы сети питаются от одного первичного эталонного генератора тактовых импульсов (ПЭГ), расположенного в центре звезды (хабе);
  • распределенная одноуровневая схема – каждый (или каждый второй) узел сети снабжается ПЭГ или его эквивалентом – приемником сигналов единого первичного эталонного генератора;
  • иерархическая многоуровневая схема. Ее суть в том, что сигналы ПЭГ (первый уровень иерархии) распределяются по синхронизируемым элементам (СЭ) дерева сети синхронизации до второго уровня иерархии, где они управляют вторичными источниками – вторичными задающими генераторами (ВЗГ), которые через цепочки СЭ управляют локальными источниками синхронизации третьего уровня иерархии. Эта схема управления часто называется схемой типа ведущий-ведомый (или master-slave). В документах о ВСС РФ принята именно эта схема управления синхронизацией .

ПЭГ строится на основе хронирующих атомных источников тактовых импульсов (водородный или цезиевый эталон) c точностью поддержания частоты не хуже 10-13–10-12. Калибруется вручную или автоматически по сигналам UTC. Сигналы ПЭГ (а также генераторов нижних уровней иерархии) распространяются аппаратурой распределения сигнала синхронизации (SDU/АРСС), обеспечивающей на практике от 16 до 520 интерфейсных выходов сигналов ТСС, которые по наземным линиям связи передаются для управления ВЗГ.

Стандарты предусматривают четыре режима работы хронирующих источников: – режим ПЭГ (мастер-узел); режим принудительной синхронизации (ведомый ВЗГ, транзитный и/или местный узлы); режим удержания (holdover) с точностью удержания 5 10-10 для транзитного узла и 10-8 для местного узла и с суточным дрейфом 10-9 и 2 10-8, соответственно ; свободный режим (free run) для транзитного и местного узлов с точностью удержания 10-8 и 10-6, соответственно.


ТОЧНОСТНЫЕ ПАРАМЕТРЫ И ОСНОВНЫЕ ОШИБКИ ЭТАЛОННЫХ ИСТОЧНИКОВ


Эталонные источники разных уровней формируют следующие эталонные синхросигналы:

  • 2048 кГц – синхронный частотный сигнал в соответствии с ITU-T G.703/13 – для синхронизации АТС, УАК (узлов автоматической коммутации), систем ПЦИ/PDH и СЦИ/SDH;
  • 2048 Кбит/с – потоковый синхронный сигнал псевдослучайной последовательности в соответствии с ITU-T G.703/9, или сигнал, получаемый из входного сигнала Е1 (от АТС или УАК) с использованием функции ретайминга (retiming, ресинхронизация). Применяется для синхронизации систем PDH, SDH и мультиплексорного оборудования;
  • синхронный 64-кГц сигнал для синхронизации основных цифровых каналов (ОЦК) PDH;
  • дополнительные синхронные сигналы 8 кГц; 1; 5 и 10 МГц – для синхронизации цифрового оборудования.

При этом эталонные источники обладают определенной нестабильностью, отдельные параметры которой нормируются соответствующими стандартами для каждого класса оборудования. Основные из них:

  • дрожание фазы/джиттер (jitter) – кратковременные, с частотой выше 10 Гц, смещения фронтов сигнала тактовой синхронизации относительно их идеальных положений во времени. Для всех типов генераторов джиттер не должен превышать 5% от длительности единичного интервала в выходном сигнале 2048 кГц или 2048 Кбит/с;
  • дрейф фазы/вандер (wander) – медленные, с частотой не выше 10 Гц, смещения фронтов сигнала тактовой синхронизации относительно их идеальных положений во времени. Для всех типов генераторов вандер не должен превышать 12,5% от длительности единичного интервала в выходном сигнале 2048 кГц или 2048 Кбит/с;
  • полоса захвата (hold-in range) – максимальное расхождение между тактовыми частотами ведущего и ведомого генераторов, в пределах которого ведомый генератор обеспечивает автоподстройку частоты;
  • ошибка временного интервала ОВИ/TIE – разность между измеренными значениями временного интервала Т, необходимого тестируемому генератору для генерации n импульсов длительностью t0 (T = n t0), и аналогичного временного интервала Tref для эталонного генератора (Tref = n tref): TIE(t, n) = T(t, n) – Tref(t, n);
  • максимальная ошибка временного интервала МОВИ/MTIE – максимальное значение разброса временных отклонений сигналов тестируемого генератора от эталонного за некоторый период измерения Т;
  • девиация временного интервала ДВИ/TDEV – измеренное максимальное отклонение параметров временного интервала от их среднего значения;
  • тносительное отклонение частоты Df/fн = (fд – fн) / fн, где fд – действительная частота сигнала, fн – заданная номинальная частота сигнала.

КЛАССЫ И ХАРАКТЕРИСТИКИ ХРОНИРУЮЩИХ ИСТОЧНИКОВ


Основных международных классификаций хронирующих источников две – на основе стандарта ANSI Т1.101 и на основе рекомендаций ITU-T G.811, G.812, G.813. Еще существуют национальные классификации, например предложенная в РТМ МФ РФ классификация на основе понятия "блок системы синхронизации" (БСС) . Статистика возникновения проскальзываний при взаимодействии двух узлов, синхронизируемых таймерами различной точности , показывает, что при существующей точности таймеров синхронный режим вообще недостижим, псевдосинхронный обеспечивают только узлы с таймерами класса Stratum 1 или G.811, а плезиохронный режим можно поддержать, если точность таймеров взаимодействующих узлов не хуже 10-9. Из отечественных таймеров последний режим обеспечивают только генераторы на основе БСС-1. Существенно, что приведенная статистика характеризует только одно звено синхронизации. В многозвенной схеме ситуация ухудшается пропорционально числу звеньев.


ОБОРУДОВАНИЕ СИНХРОНИЗАЦИИ СЕТИ


Оборудование для синхронизации сетей можно условно разделить на две большие категории: автономные хронирующие источники и датчики точного времени. Первые основаны на прецизионных атомных (водородных, рубидиевых или цезиевых) эталонах времени. Достаточно дорогие и редкие до недавнего времени, они (из-за бурного развития синхронных систем связи) производятся серийно и вполне доступны для установки в сетях. Характерные примеры подобных устройств : эталоны водородные – активный VCH-1003A (погрешность по частоте ±1,5 10-12) и пассивный VCH-1004 (погрешность ±3,0 10-12); цезиевый HP 5071A (погрешность ±1,5 10-12); рубидиевый ННИПИ Р-1050С (±2,0 10-11). Более широко (в первую очередь, в качестве БСС) распространены генераторы с кварцевым первичным источником, но они не используются в ПЭГ. Характерный пример – кварцевый таймер ONIIP M0075 с суточной нестабильностью по частоте ±1,0 10-9.

Однако сегодня наиболее простое решение – датчики точного времени, работающие со спутниковыми системами точного времени. Они обладают точностью синхронизации 10-11 и точностью удержания частоты 10-10. Наиболее доступна (из универсальных и точных) система мирового скоординированного времени UTC. Для его трансляции используются несколько спутниковых систем. Наиболее известные из них – международная спутниковая радионавигационная система LORAN-C, отечественная система позиционирования ГЛОНАСС и глобальная система позиционирования GPS (США) . Последняя, в силу дешевизны приемного оборудования, получила наибольшее распространение.

Список литературы

  1. РТМ по построению тактовой сетевой синхронизации (ТСС) на цифровой сети связи Российской Федерации. – М.: ЦНИИС, 1995.
  2. Концепция развития связи Российской федерации / Под ред. В.Б. Булгака и Л.Е. Варакина. – М.: Радио и связь, 1995. - 224 с.
  3. MainStreet 3645. General Information. Release 5. Newbridge, 1994.
  4. Рыжков А.В., Кириллов В.П., Кадерлеев М.К. Основы системы ТСС магистральной цифровой сети. – Вестник связи, 2000, №10.
  5. Слепов Н.Н. Современные цифровые технологии оптоволоконных сетей связи. – М.: Радио и связь, 2000.

Необходимость синхронизации транспортной сети обусловлена жесткими нормами на ошибки при передаче информации. Частота повторяемости ошибок зависит от степени синхронизма транспортной сети и взаимодействующих с ней вторичных сетей.

Все сетевые элементы (Network Element – NE) в транспортной сети SDH работают с использованием одной тактовой частоты, источник этого сигнала называется первичным опорным тактовым сигналом (Primary Reference Source – PRS) или первичным эталонным генера­тором (ПЭГ). Характеристики первичного опорного тактового сигнала определяются рекомендацией G.811 ITU-T. Погрешность его частоты и стабильность должны быть порядка ±10-11; эти характеристики реа­лизуются с помощью цезиевого генератора.

Распределение тактирующих сигналов производится с использо­ванием обычных линий передачи, в данном случае это линии пере­дачи SDH. Промежуточные сетевые элементы, такие, как регенерато­ры, мультиплексоры ввода-выделения и т.п., работают в ведомом ре­жиме, используя компоненту тактового сигнала, извлекаемую из при­нимаемого сигнала STM-N.

Ухудшение качества тактового сигнала, такое, как джиттер, накап­ливающийся за время передачи через цепочку сетевых элементов и линий, уменьшается благодаря высокому качеству ведомого такти­рующего оборудования (Secondary Reference Source – SRS) или ве­домых задающих генераторов (ВЗГ), характеристики которых приве­дены в рекомендации G.812 для транзитного и локального NE. ВЗГ представляет собой дополнительно стабилизированный кварцевый генератор с собственной долговременной (в сутки) точностью под­держания частоты не хуже 10-8 и более высокой кратковременной стабильностью (до 10-11 в интервале секунды). Поэтому ВЗГ устраня­ют фазовые дрожания синхронизирующей их тактовой частоты. Архи­тектура сети синхронизации в регионе синхронизации должна иметь древовидную структуру без замкнутых колец, для исключения неод­нозначного режима работы (рис. 2.12).

Рис. 2.12. Архитектура сети синхронизации

Цепи тактирования сетевых элементов SDH могут синхронизироваться как от сигнала линии, так и от внешнего опорного источника.

Ведомый источник тактирования входит в режим удержания (holdover), когда он теряет синхронизирующий сигнал.

Сетевой элемент SDH имеет возможность выводить сигнал такти­рования к устройству BITS (Building Integrated timing Supply), который уменьшает искажения тактового сигнала. Промежуточные сетевые элементы непосредственно используют тактовый сигнал, извлекае­мый при помощи BITS (рис. 2.13).

Рис. 2.13. Источник тактирования в узлах:

основной ----; резервный ------------

Тактовые сигналы необходимые для работы сетевого элемента, вырабатываются цепями тактирования, которые работают, главным образом, в ведомом режиме.

Таким образом, сеть синхронизации представляет собой совокупность ПЭГ, ВЗГ и генераторов мультиплексоров и регенераторов средств автоматического резервирования, управления и самих синxpoсигналов.

В мировой практике имеется несколько важных технологических подходов к построению системы синхронизации. Первый из них заключается в разделении всей системы синхронизации на межузловую и внутриузловую системы. В результате возникла концепция интегрированных систем синхронизации BITS. Концепция BITS, представленная на рис. 3.6, охватывает три основных подсистемы: систему межузловой синхронизации (Interoffice Timing), систему внутриузловой синхронизации (Intraoffice Timing) и подсистему контроля и управления качеством синхронизации (QoS).

BITS



Интеграция на уровне

Использование единого единой системы

Оборудования



Интеграция в TMN

Рис. 3.6. Концепция построения интегрированных систем синхронизации BITS.

Система межузловой синхронизации предусматривает размещение в ключевых узлах сети генераторов синхронизации и построение ситемы распределения синхрочастот по сети с использованием трафиковых или выделенных каналов связи. Эта система является основой любой системы синхронизации, поэтому она наиболее важна при проектировании. Система межузловой синхронизации имеет собственную топологию, часто отличную от топологии сети, и тесно связана со структурой, как первичной, так и вторичной

телекоммуникационной сети. При расширении и реконфигурации сети связи система межузловой синхронизации также должна изменяться и модернизироваться.

Система внутриузловой синхронизации имеет более локальное значение, поскольку она определяет порядок синхронизации различных цифровых устройств в пределах одного узла сети. В систему внутриузловой синхронизации могут входить специальные генераторы, однако в большей степени эта система строится на основе объединения генераторов, входящих в состав цифровых устройств связи, размещенных на узле. В отличие от системы межузловой синхронизации, которая должна проектироваться, строиться и обслуживаться системно, с учетом топологии и процессов, проходящих во всей сети, система внутриузловой синхронизации создается локально, привязываясь к конкретному узлу связи. Модернизация сети связи может требовать модификации системы только в случае, если первая модернизирует конкретный узел либо приводит к изменению параметров синхросигнала, от которого синхронизируется данный узел.



Учитывая, что в настоящее время значительно повысились требования к надежности и качеству систем синхронизации, в состав современной системы включается дополнительно подсистема, которая непосредственно связана с обслуживанием системы синхронизации – подсистема контроля и управления качеством системы синхронизации (QoS). Основным назначением этой системы являются управление, диагностика и тестирование системы синхронизации.

Обеспечение высоких параметров качества и надежности системы связи требуют от оператора постоянного контроля за состоянием системы синхронизации. Для осуществления управления системой синхронизации создается система управления, интегрированная в общую платформу TMN, так что оператор имеет возможность контролировать состояние системы синхронизации и осуществлять ее реконфигурацию из единого центра в режиме реального времени. Особенно важные функции выполняет система управления в процессах реконфигурации системы синхронизации. Для этого используются сигналы о параметрах качества системы синхронизации (SSM).

Разделение в концепции BITS всех генераторов сети на межузловую и внутриузловую систему синхронизации значительно уменьшает рассматриваемое количество устройств. Есть узлы сети, которые рассматриваются как отдельные генераторы, и так строится система межузловой синхронизации. На узлах сети имеется большое количество разных цифровых устройств (иногда сотни или тысячи). Синхронизация этих устройств в пределах узла – задача отдельная. Таким образом, в системе межузловой синхронизации мы видим только узлы, а цифровые устройства мы видим в системе внутриузловой синхронизации.

Основная проблема – система межузловой синхронизации, именно она является территориально-распределенной. Для синхронизации отдельных устройств внутри узла модно в конце концов проложить специальный кабель. Но этого нельзя сделать в системе межузловой синхронизации, где используются только существующие каналы связи.

Синхронизация в сетях SDH. Международные органы стандартизации и, в частности, МСЭ работают над определением характеристик генераторного оборудования СЦИ – SEC (SDH Equipment Clock). Характеристики SEC содержаться в нескольких Рекомендациях ETSI и МСЭ-Т, предоставляющих полную спецификацию параметров точности и стабильности, а также подробное функциональное описание. Здесь SEC представлен функциональным блоком источника синхросигнала синхронного оборудования SETS (Synchronous Equipment Timing Sourse).

Источник синхронизации может выбираться блоком SETS среди трех опорных точек:

Т1 – опорный сигнал, выделенный из входного сигнала STM-N;

Т2 – опорный сигнал, выделенный из входнго сигнала ПЦИ;

Т3 – опорный сигнал, полученный из внешнего устройства синхронизации через физический интерфейс синхронизации.

Кроме того, SETS может синхронизироваться от входящего в его состав внутреннего генератора. В сторону передачи SETS обеспечивает синхронизацию:

Всех функциональных блоков в составе оборудования СЦИ через опорную точку Т0;

Внешний порт синхронизации через опорную точку Т4.

Блок тактового генератора синхронного оборудования может работать в следующих режимах:

Режим захвата синхронизации от входного опорного сигнала(точки Т1, Т2 или Т3), выбранного переключателем;

Режим удержания;

Режим свободных колебаний с точностью частоты .

В зависимости от структуры распределения сигналов сетевой синхронизации существует несколько вариантов или режимов синхронизации блока SETS и распределения его синхросигнала:

Синхронизация от линейного сигнала. Опорный синхросигнал выделяется из линейного сигнала направления «Восток» или «Запад» (Т1). Это обычный режим синхронизации в сетях типа цепочки или кольца.

Синхронизация от компонентного сигнала. Опорный синхросигнал выделяется из компонентного сигнала, который может быть либо сигналом STM-N (Т1), либо сигналом ПЦИ (Т2).

Внешняя синхронизация. Сетевой элемент синхронизируется от выделенного внешнего опорного синхросигнала (Т3). Этот режим синхронизации применяется, например, когда сетевой элемент получает синхросигнал от генераторного оборудования сети синхронизации.

Внутренняя синхронизация. Генераторное оборудование сетевого элемента не получает никакого опорного синхросигнала (режим свободных колебаний или режим удержания.

Общеизвестно, что технология SDH/SONET может реализовать все свои преимущества, лишь опираясь на распределение по сети надежного синхросигнала надлежащего качества. В противном случае операции с указателями могут привести к избыточному значению джиттера и, следовательно, к снижению достоверности передачи информации в транспортируемых компонентных сигналах, особенно при большом числе переприемов.

В настоящее время средства сетевой синхронизации повсеместно признаны прибыльным сетевым ресурсом, позволяющим помимо удовлетворения потребностей СЦИ/СОНЕТ осуществить цифровую коммутацию без проскальзываний, улучшить рабочие характеристики транспортных услуг на основе АТМ и повысить качество множества различных услуг (например, цифровых сетей связи с интеграцией услуг, мобильной сотовой связи и т. д.).

По этой причине большинство ведущих операторов связи организовали национальные сети синхронизации, чтобы доставить общий эталонный (опорный) сигнал синхронизации к каждому узлу сети электросвязи. МСЭ-Т и ETSI выпустили новые стандарты по синхронизации, пригодные для работы современных (включая те, которые базируются на СЦИ/СОНЕТ) цифровых сетей электросвязи. Эти стандарты содержат более строгие и более определенные требования к джиттеру и вандеру на интерфейсах синхронизации, требования к точности и стабильности устройств синхронизации, а также к архитектуре сетей синхронизации.

Синхронизация и цифровая передача в сетях SDH/SONET. В сетях СЦИ используются преимущества сетевой синхронизации для снижения джиттера и вандера в выходных компонентных потоках. Дело в том, что в сложных сетях с несколькими переприемами (загрузкой/выгрузкой) ПЦИ-СЦИ и СЦИ-ПЦИ и при использовании оборудования различных поставщиков, удовлетворить требованиям к фазовым дрожаниям на границах ПЦИ/СЦИ можно только при точной синхронизации всех сетевых элементов СЭ (NE), избегая каких-либо операций с указателями. Поэтому в сетях SDH необходимо синхронизировать не только первичные мультиплексоры и цифровое коммутационное оборудование, но и узлы транспортных сетей.

В сетях СЦИ не рекомендуется передавать синхронизацию в сигналах, размещенных в циклах STM-N (например, 2,048 Мбит/с), так как компонентные сигналы полезной нагрузки синхронного транспортного модуля не могут эффективно передавать тактовые сигналы из-за избыточного джиттера, наблюдаемого при коррекции указателей. Наилучшим и прямым способом передачи синхросигнала в сети СЦИ служит его передача непосредственно в групповых сигналах STM-N. Тактовый сигнал, выделенный из сигналов STM-N, имеет лучшее качество, которое можно достичь в настоящее время. На него воздействует только джиттер, вносимый линией (например, джиттер, обусловленный тепловым шумом и условиями окружающей среды в оптической линии), а не выравнивание по битам или какие-либо другие преобразования.

Схема синхронизации двух цифровых коммутационных станций в сетях СЦИ показана на рис. 3.7. Внешнее генераторное оборудование SASE (Stand Alone Synchronization Equipment) первой станции (узла) синхронизирует не только генераторное оборудование цифровой коммутационной станции, но и задающий генератор оборудования СЦИ SEC. Таким образом, здесь выходной групповой сигнал является синхронным с ведущим генератором сети. На приемном конце SEC не синхронизируется непосредственно от входящего сигнала STM-N. Специальная функция тактового генератора оборудования СЦИ (переключатель) позволяет выделить тактовый сигнал из входного сигнала STM-N и непосредственно направить его через интерфейс синхронизации 2,048 МГц к генераторному оборудованию SASE на этой станции. Это оборудование SASE распределяет свои сигналы синхронизации по всему оборудованию узла, включая цифровую коммутационную станцию и демультиплексор СЦИ.

2,048 Мбит/с 2,048 Мбмт/с


Сеть СЦИ



2,048 МГц 2,048 МГц



Задающий

генератор

Рис. 3.7. Схема синхронизации двух станций.

Казалось бы, этот способ синхронизации генераторного оборудодования второй станции слишком сложен, но он дает наилучшее решение. Действительно, генераторное оборудование SASE имеет более высокую стабильность и лучшие возможности фильтрации синхросигнала, чем простые генераторы SEC. При использовании этой схемы генераторное оборудование цифровой коммутационной станции и демультиплексора СЦИ во второй станции синхронизируется по более стабильному сигналу синхронизации. Более того, если сигнал STM-N пропадет, SASE обеспечивает достаточно долго выходную частоту в режиме свбодных колебаний генератора с намного большей точностью, чем точность соответствующей частоты генератора SEC.

Согласно схеме цифровое оборудование в сети синхронизируется независимо и взаимодействует друг с другом только через каналы передачи данных (каналы трафика). Различие тактовых частот, неизбежное для такой схемы, будет приводить к появлению в ней проскальзываний. Исключить проскальзывание в такой схеме нельзя, но их частота будет связана с относительной нестабильностью двух генераторов ПЭГ. Например, если взаимная нестабильность генераторов будет находиться в пределе , то проскальзывания будут происходить не чаще одного раза в полгода. Этого никто не заметит, так что такая схема в данном случае может вполне использоваться.

Другим вариантом построения системы межузловой синхронизации является использование принципа принудительной синхронизации, когда один узел сети синхронизируется от другого. Такая схема принята в международной практике как схема построения систем межузловой синхронизации выделенных сетей или их участков, поскольку обеспечивает наибольшую стабильность работы системы. Принцип принудительной синхронизации предусматривает построение иерархической структуры синхронизации с одним или несколькими первичными генераторами синхросигнала (рис. 3.9). Наличие нескольких графов синхронизации дает возможность резервирования цепей синхронизации. Так, например, на рис. 3.9 показаны как основные пути синхронизации (P – primary), так и резервные (S – secondary). Каждое устройство в сети может переходить от основного источника синхронизации к резервному в случае потери канала взаимодействия с основным источником. Такая система обладает повышенной надежностью и реализована на всех современных сетях связи. Кроме того, иерархическая топология системы синхронизации соответствует топологии самой системы связи, чем легко достигается взаимодействие обеих сетей.

Рубрика: .

Необходимость в тактовой синхронизации возникает при совместном функционировании цифровых систем передачи и коммутации в единой цифровой сети. Обеспечение тактовой синхронизации этой сети при поддержании как можно более высокой стабильности эталонных тактовых частот является принципиально необходимым. Система ТСС осуществляет согласование шкал времени всех устройств на сети, которым необходима синхронизация, и позволяет избежать или свести к минимуму проскальзывания цифрового сигнала. Такие проскальзывания возникают при исключении или повторении бит блоков в цифровом сигнале из-за различия в скоростях записи и считывания буферных устройств на цифровой сети.

Для нормально работающей цифровой сети частота проскальзываний не должна превышать норм, установленных в Рекомендации G.822. Увеличение частоты проскальзываний существенно скажется на качестве предоставляемых пользователям услуг связи, вызывая потерю данных, возникновение «щелчков» при передаче речи, искажение и потерю частей изображения при передаче видео.

Таким образом, появляется необходимость в надежной тактовой синхронизации, задача обеспечения которой влечет за собой ряд сложных вопросов. При вводе в эксплуатацию и технической эксплуатации сети ТСС операторы сетей сталкиваются с определенными трудностями:

Одна из наиболее сложных задач при проектировании сетей ТСС — выбор получения сигналов синхронизации, их распределение внутри цифровой сети для обеспечения надежной синхронизацией всего цифрового оборудования, нуждающегося в синхронизации. То есть оператор, проектирующий сеть ТСС, должен решать следующие вопросы:

Выбор источника синхросигнала (основной и резервный)
определение основного и резервного путей прохождения синхросигналов
установление приоритетов входов сигналов синхронизации во всем оборудовании сети ТСС
определение качества источников сигналов синхронизации
проведение структурного анализа сети с целью исключения возможности образования петель и потери сигналов синхронизации при авариях
выяснение потребности в дополнительном оборудовании, устанавливаемом на сети
разработка схемы внутриузловой синхронизации с учетом подключения сигналов синхронизации к коммутационным станциям и к другому оконечному оборудованию
проверка обеспечения сигналами синхронизации каждой коммутационной станции в случае возникновения любой одиночной неисправности.

Таким образом, надежность и качественные показатели сети ТСС должны быть заложены на первых этапах ее проектирования. Зачастую из-за недостаточно правильного планирования сети ТСС операторы сталкиваются с проблемой возникновения петель в сети синхронизации. Кроме того, встает вопрос выбора наиболее эффективного метода синхронизации телекоммуникационной сети, от которого зависит структурная надежность сети синхронизации.

Под эффективностью метода синхронизации сети телекоммуникаций подразумеваются не только технические вопросы распределения сигналов синхронизации на сети с учетом доставки сигналов синхронизации ко всем узлам сети и резервирования путей их прохождения, но также и экономические вопросы, где тщательно спланированная сеть ТСС может быть достаточно надежной при меньших финансовых затратах на оборудование синхронизации.

Методы синхронизации
телекоммуникационных сетей

Сеть ТСС строится на базе цифровых сетей связи как наложенная сеть. В ней определяются направления, по которым передаются или могут передаваться сигналы синхронизации. Так как сигнал тактовой синхронизации содержится в структуре информационного сигнала, он передается в том же направлении, что и любые информационные сообщения.

Однако для передачи синхросигнала не все эти направления разрешается использовать в сети ТСС. Задача сети синхронизации состоит в определении порядка передачи синхросигнала и условий, при которой запрещается ее прием. Построенная таким образом сеть синхронизации имеет свою особую структуру.

Структура сети ТСС в значительной мере зависит от выбранного способа синхронизации. Существуют два основных способа синхронизации: принудительный и взаимный. Возможны также некоторые их сочетания.

В случае принудительной синхронизации, часто в литературе называемой «ведущий ведомый», на сети имеется главный задающий генератор (ГЗГ), обеспечивающий сигналами синхронизации все другие задающие генераторы (ВГ) непосредственно или с помощью промежуточных задающих генераторов (ВГ). Так, ГЗГ называется ведущим, а остальные — ведомыми генераторами (ВГ) (рис.1,а).

Взаимной синхронизацией называется способ, при котором все задающие генераторы управляют друг другом (рис.1, б).

Возможен также смешанный способ синхронизации, при котором ГЗГ передает сигналы синхронизации ведомым генераторам как при принудительной синхронизации, и в то же время ведущие задающие генераторы обмениваются синхросигналами как при взаимной синхронизации (рис.1,в).

Взаимная синхронизация чувствительна ко всем изменениям структуры сети, поэтому применяется только в случае стационарных структур. Однако допускается сравнительно низкая стабильность частот всех задающих генераторов, так как за счет взаимного уравновешивания (выравнивания) частот используемых задающих генераторов обеспечивается некоторое повышение стабильности частоты на сети.

В настоящее время на цифровых сетях телекоммуникаций применяется только принудительная синхронизация, хотя на некоторых сетях не так давно применялась и смешанная синхронизация.

Рис.1 Принудительная (а), взаимная (б), смешанная синхронизация (в)

Система тактовой сетевой синхронизации
Республики Узбекистан

Тактовая синхронизация на цифровой сети республики должна обеспечивать цифровую передачу информации с качеством, отвечающим требованиям МСЭ-Т, и практически не влиять на надежность и живучесть самой сети. Сигналами синхронизации на цифровой сети могут служить как специальные сигналы с частотой 2048 кГц, так и информационные сигналы, со скоростью передачи 2048 Кбит/с в соответствии с Рекомендацией МСЭ-Т G.703.

По сети на базе систем передач синхронной цифровой иерархии (СП СЦИ) синхросигналы передаются в цифровых потоках STM-N. Цифровые потоки 2048 Кбит/с, переданные по СП ПЦИ, практически не пригодны для использования в качестве носителей синхросигналов.

В мультиплексорах СП СЦИ из потоков STM-N формируются сигналы синхронизации 2048 кГц. Для восстановления качества сигналов синхронизации, переданных с помощью потоков STM-N, применяются генераторы сетевых элементов (ГСЭ), входящие в состав мультиплексоров. На ГСЭ могут поступать синхросигналы из линейного или компонентного потока. Сигналы синхронизации 2048 кГц могут поступать на ГСЭ непосредственно от первичного эталонного генератора (ПЭГ), вторичного задающего генератора (ВЗГ), или от ГСЭ другого мультиплексора.

Сигналы синхронизации, поступающие на аппаратуру, нуждающуюся в синхронизации, выбираются исходя из приоритета, а в мультиплексорах СП СЦИ еще и по качеству передаваемого синхросигнала, заложенного в заголовок сигнала STM-N.

В Республике Узбекистан сеть тактовой синхронизации построена с учетом рекомендаций МСЭ-Т G.803, G.811, G.812, G.813, G.822, G.823 по принципу принудительной синхронизации. При этом используется иерархия задающих генераторов, для которой каждый уровень задающего генератора синхронизируется от источника более высокого или того же уровня: первый уровень — ПЭГ, второй — ВЗГ (транзитный узел), третий — ВЗГ местного узла или задающий генератор коммутационной станции, четвертый — задающий генератор сетевого элемента (ГСЭ).

Первичный эталонный генератор — это эталонный задающий генератор, в функции которого входит использование эталонных стандартов частоты (водородных или цезиевых) для формирования выходных синхросигналов.

Вторичный задающий генератор — это генератор, выполняющий логические функции выбора входного сигнала синхронизации от ряда источников. При этом осуществляются необходимые обработка и фильтрация сигнала, а также распределение синхросигнала между другими элементами узла. При повреждении или ухудшении всех входных эталонных сигналов синхронизации ВЗГ должен запомнить сведения о частоте перехода в режим запоминания частоты в соответствии с Рекомендацией МСЭ-Т G.812.

Генератор сетевого элемента — это встроенный в сетевой элемент (мультиплексор) задающий генератор, принимающий входные сигналы синхронизации от ряда внешних источников, выбирающий один из них и производящий его минимальную фильтрацию. В случае повреждения всех входных эталонных сигналов синхронизации в ГСЭ должен использоваться внутренний собственный задающий генератор, который в режиме запоминания частоты запомнит приблизительно частоту входного синхросигнала.

Надежность аппаратуры ПЭГ обеспечивается наличием в системе эталонных источников «в горячем режиме» нескольких стандартов частоты (цезиевых) и дополнительно установленных приемников GPS с управляемым рубидиевым источником частоты. Надежность и живучесть системы ТСС в целом гарантируются однородностью сети связи, наличием прямых и резервных путей синхронизации, кольцевых структур (пространственно разнесенных трасс) в ВОЛП, а также дополнительных сигналов от приемников GPS, входящих в состав системы ПЭГ.

Система тактовой сетевой синхронизации осуществляется с помощью системы независимых эталонных источников сигналов синхронизации, установленных в МЦК г. Ташкента. В качестве источника сигналов синхронизации первым приоритетом на сети ТСС республики используется ПЭГ, представляющий собой цезиевый генератор эталонных частот типа TimeCesium 4400 (Acterna, Германия). Это стабильный источник эталонных частот с микропроцессорным контролем, точность частоты на выходе генератора составляет ± 1×10-12 . Функцией этого эталонного генератора является выработка точных стабильных и спектрально чистых синусоидальных сигналов. Приемник сигналов синхронизации типа SYSTEM 2000 фирмы DATUM на основе системы GPS — Global Position System — Глобальная навигационная система на основе низкоорбитальной спутниковой системы NAVSTAR. SYSTEM 2000 принимает спутниковые сигналы системы GPS с частотой 1575.42 МГц и регулирует с их помощью внутреннего задающего генератора (на основе рубидия). Данный источник сигналов синхронизации задействован в качестве резервного источника.

В СУС города Бухары установлен дополнительный первичный источник синхронизации с использованием системы GPS. При выходе из строя всех эталонных источников, установленных в МЦК г. Ташкента, этот источник берет на себя синхронизацию цифровой сети республики.

Такая схема с использованием независимых эталонных источников синхросигналов обеспечивает высокую надежность и резервирование цепей синхронизации на цифровой сети республики.

Перестройка сети синхронизации осуществляется автоматически. Распределение тактовой синхронизации по регионам республики осуществляется таким образом, чтобы исключить образование замкнутых тактовых шлейфов.

На сетевых узлах магистральной цифровой сети и в региональных центрах синхронизация осуществляется с использованием вторичных задающих генераторов SSU (Synchronization Supply Unit — специальный генератор системы синхронизации), который получает сигналы синхронизации от ПЭГ и затем распределяет их по сетевым элементам участка или узла сети.

В качестве ВЗГ используется система синхронизации типа Sync Star NFR 2001 (Siemens). Задающий генератор выполняет функции восстановления качества передаваемого по сети синхросигнала (сигнала эталонной тактовой частоты), распределения этого сигнала на необходимое количество выходов и при пропадании входного синхросигнала запоминания его временных характеристик с целью получения качественного синхросигнала на выходе ВЗГ в режиме удержания частоты в соответствии с требованиями Рекомендации МСЭ-Т G.812. Полученные с ВЗГ тактовые сигналы могут быть использованы как в плезиохронных, так и синхронных цифровых сетях связи.

Оценка качества работы
системы тактовой сетевой синхронизации в процессе ее эксплуатации

Для качественного определения технического состояния системы ТСС необходим контроль параметров всех элементов, обеспечивающих синхронизацию сети.

Контроль состояния сети синхронизации сводится к определению основных качественных показателей системы ТСС:

Ошибка временного интервала TIE (Time Interval Error) — погрешность временного интервала измеряемого сигнала относительно его эталонного значения
максимальная ошибка временного интервала MTIE — максимальное значение ошибки временного интервала измеряемого сигнала для различных временных интервалов при заданном времени наблюдения
Джиттер в системе синхронизации — кратковременные отклонения значащих моментов цифрового сигнала относительно их идеальных позиций во времени, где «кратковременные» означает, что эти отклонения происходят с частотой выше, чем 10 Гц (вне полосы частот ФНЧ ФАПЧ устройств синхронизации)
Вандер в системе синхронизации — долговременные отклонения значащих моментов цифрового сигнала от их идеальных позиций во времени (где «долговременные» означает, что эти отклонения осуществляются частотой не больше, чем 10 Гц в полосе частот ФНЧ ФАПЧ устройств синхронизации)
Девиация временного интервала TDEV (Time Deviation) — значение ожидаемого изменения длительности определенного временного интервала сигнала.

Контроль вышеуказанных параметров качества системы ТСС — одна из основных задач, стоящих перед техническим персоналом, при обеспечении качественной синхронизации сети телекоммуникации.

Система управления ТСС

Подсистемой, входящей в состав современных сетей телекоммуникаций, является подсистема управления, которая включает в себя контроль состояния элементов сети синхронизации и управления ее параметрами в режиме реального времени. Наиболее полно эти функции получили развитие с внедрением технологии SDH, поскольку SDH обеспечивает передачу специальных служебных сигналов о параметрах синхронизации линейного тракта.

Таким образом, с помощью системы управления сетью ТСС возможно передавать характеристики синхросигналов с любого ПЭГ или ВЗГ в главный и региональные центры управления в реальном масштабе времени; оценивать качество синхросигналов; предвидеть их ухудшение; принимать оперативные решения по планированию и реконфигурированию системы ТСС и обеспечить не обслуживаемый местным персоналом режим работы ВЗГ.

Система управления сетью синхронизации обеспечивает выполнение следующих функций в области управления и контроля как на уровне управления сетью (сетевой уровень), так и на уровне сетевых элементов сети синхронизации:

1. Управление качеством формирования и передачи сигналов синхронизации.
2. Управление обработкой неисправностей в сети синхронизации.
3. Управление конфигурацией сети синхронизации.
4. Управление безопасностью сети синхронизации.
5. Управление учетом и расчетами.

Управление качеством формирования и передачи синхросигналов подразумевает постоянный контроль качества сигналов тактовой синхронизации, выполнение действий по обеспечению этого качества и получение результатов измерений показателей качества.

Управление обработкой неисправностей обеспечивает сбор и обработку данных состояния ПЭГ/ВЗГ, генерацию аварийных сообщений и сообщений о событиях. Вся подробная информация обрабатывается через систему приоритетов и фильтров с целью предоставления оператору для принятия решений.

Управление конфигурацией заключается в дистанционном и местном управлении конфигурационными параметрами каждого ПЭГ/ВЗГ через графический пользовательский интерфейс.

Управление безопасностью в системе управления сетью синхронизации подразумевает защиту от несанкционированного доступа с помощью паролей, а также ограничение выполняемых определенным оператором функций в зависимости от присвоенного ему уровня.

Основная стратегия технической эксплуатации системы ТСС на сети республики

1. Обеспечение в процессе эксплуатации проектных решений по ТСС, ее надежности и поддержания требуемого качества по основным показателям работы системы синхронизации на цифровой сети республики.
2. Постоянное развитие и совершенствование методов технической эксплуатации системы ТСС с использованием современных средств контроля и управления сетью.
3. Повышение квалификации обслуживающего персонала

В Одноклассники

2.6 Тактовая сетевая синхронизация

Любая цифровая система в своей основе требует тактовый задающий генератор, который должен тактировать все внутренние и внешние операции по обработке цифровых данных. Наибольшие сложности в цифровых системах возникают, когда необходимо наладить взаимодействие различных в своей основе цифровых систем, т.е. систем с различными тактовыми генераторами и функциональными реализациями (системы передачи и коммутации). Даже внутри одной системы, например, системы передачи, требуется синхронизировать приемник сигнала с передатчиком (тактовый синхронизм, цикловой синхронизм, сверхцикловой синхронизм). Применение разных тактовых генераторов может повлечь за собой сбои передачи, если не произвести принудительной синхронизации генератора приемника генератором передатчика. При этом на стабильность частот генераторов на обоих концах линии цифровой передачи будут влиять различные физические факторы, которые вызывают дрожание фазы тактирующих импульсов.

Этими факторами являются:

Шум и помехи, действующие на цепь синхронизации в приемнике;
- изменение длины пути передачи сигнала, обусловленные температурными перепадами, рефракцией в атмосфере и т. д.;
- изменение скорости распространения сигналов в физической среде (в проводных и беспроводных линиях);
- нарушение регулярности поступления хронирующей информации;
- доплеровские сдвиги от подвижных оконечных устройств;
- переключения в линиях (срабатывание автоматического резервирования);
- систематические дрожания фазы цифрового сигнала, возникающие в регенераторах (повторителях).

Для решения проблем накопления фазовых дрожаний различного происхождения применяется ряд специальных мер.

Применение эластичной памяти для компенсации кратковременной нестабильности тактовой частоты. Пример использования такой памяти приведен на рисунке 2.47.

Применение высокостабильных генераторов тактовых частот для сетей связи. Как правило, эти генераторы выполнены на основе атомного эталона частоты (цезиевые, водородные, рубидиевые) и обеспечивают долговременную стабильность тактов в заданных пределах, например

10 -12 .

Применение таких генераторов позволяет организовать принудительную иерархическую систему управления множеством тактовых генераторов.

Термины и определения ТСС первоначально приведены в рекомендации МСЭ-Т G.810. Ряд терминов и определений, которые необходимы для дальнейшего изложения материала, приведены ниже.

В цифровых системах понятие "синхронизм" тесно связано с понятием "проскальзывания" (slips).
Проскальзывание - исключение или повторение в цифровом сигнале одного или нескольких бит, происходящее вследствие различия в скоростях записи и считывания двоичных данных в буферных устройствах.

Проскальзывание может быть управляемым или неуправляемым.

Проскальзывание, которое не приводит к сбою цикловой синхронизации, называют управляемым. При этом сигнал с потерями восстанавливает синхронизм.

При неуправляемом проскальзывании моменты потери и повторения позиций в цифровом сигнале невосполнимы.

Фазовые дрожания - кратковременные отклонения значащих моментов цифрового сигнала от их идеальных положений во времени. Если частота отклонений превышает 10 Гц, то их называют джиттером (Jitter). Если частота отклонений не превышает 10 Гц, то их называют блужданиями или вандером (Wander). На рисунке 2.48 представлены характеристики импульсного сигнала с изменением значащих моментов.

В современной технологии контроля получила распространение практика измерения амплитуды дрожания цифрового сигнала в единицах времени: абсолютных мкс (микросекунды) или приведенных - единичных интервалах UI (Unit Interval). Одним единичным интервалом называется время необходимое для передачи одного бита информации с заданной скоростью передачи.
Источниками тактовых сигналов в цифровых системах и сетях являются тактовые генераторы, которые подразделяются на первичный эталонный (ПЭГ), ведомый/вторичный задающий (ВЗГ), генератор сетевого элемента (ГСЭ).Дрожащий цифровой сигнал


Рисунок 2.48 Временные диаграммы дрожащего цифрового сигнала и тактовой последовательности, выделенной из идеального цифрового сигнала

Первичный эталонный генератор (ПЭГ) - высокостабильный генератор, долговременное относительное отклонение частоты которого от номинального значения поддерживается не превышающим 1x10 -11 при контроле по универсальному координированному времени.

Ведомый задающий генератор (ВЗГ) - генератор, фаза которого подстраивается по входному сигналу, полученному от генератора более высокого или того же качества. ВЗГ обеспечивает, как правило, высокую кратковременную относительную стабильность частоты (около 10 -9 - 10 -11)и существенно более низкую относительно ПЭГ долговременную относительную стабильность.

Генератор сетевого элемента (ГСЭ) - синхронизируемый внешним синхросигналом генератор (обычный кварцевый), помещаемый в мультиплексоры ПЦИ, СЦИ, АТМ, кроссовых коммутаторов и т. д. Такты ГСЭ так же подстраиваются под внешние такты, как и в ВЗГ, однако их собственная относительная долговременная стабильность не превышает 10 -6 .

Указанные генераторы имеют следующие иерархические положения по значимости в тактовой сети синхронизации (ТСС).

1-й или высший уровень иерархии ТСС - ПЭГ (иногда называемый нулевым).

1-й уровень иерархии ТСС-ПЭИ (первичный эталонный источник), не являющийся составной частью ТСС, например, международный навигационный спутник GPS или российский ГЛОНАСС, или ПЭГ другой сети.

2-й уровень иерархии ТСС - ВЗГ, который представляют как транзитный или оконечный и совмещаемый с узлами автоматической коммутации (УАК) и автоматическими междугородными телефонными станциями (АМТС) или цифровыми АТС.

3-й уровень иерархии ТСС - ГСЭ, к которым относятся мультиплексоры СЦИ, кроссовые коммутаторы СЦИ, оконечные цифровые АТС.

Источники тактового синхронизма могут быть включены в определенные сетевые конфигурации и образовывать различные сети ТСС.

Централизованная сеть распределения синхросигналов от единственного ПЭГ. Эта синхронная сеть. в которой значащие моменты сигналов подстраиваются таким образом, чтобы установить синхронизм, при котором значащие моменты повторяются с некоторой средней точностью. Это принудительная синхронизированная сеть.

Совокупность централизованных подсетей, каждая из которых содержит ПЭГ. При отсутствии взаимосвязи между ПЭГ такая сеть синхронизации обеспечивает псевдосинхронный режим работы соответствующих цифровых подсетей.

Плезиохронный режим сети ТСС может возникнуть в цифровой сети, когда генератор ведомого узла (ВЗГ или ГСЭ) полностью теряет возможность внешней принудительной синхронизации из-за нарушения как основного, так и всех резервных путей синхронизации. В этом случае генератор переходит в режим удержания (в англоязычной литературе -holdover), при котором запоминается частота сети принудительной синхронизации. По мере ухода с течением времени частоты генератора из-за дрейфа от величины, зафиксированной в начальный момент в памяти, он переходит в так называемый свободный режим (в англоязычной литературе - free-run mode). Этот режим синхронизации уже называется асинхронным и характеризуется большим расхождением частот генераторов, при котором, однако, еще не нарушается процесс передачи информационной нагрузки в сети связи.

Сеть синхронизации ТСС образуется совокупностью генераторов (ПЭГ, ВЗГ, ГСЭ), системой распределения синхросигналов в узлах связи SASE (Stand Alone Synchronization Equipment - отдельное оборудование синхронизации) или блоки сетевой синхронизации (БСС) и между ними и самими синхросигналами, которые транслируются в определенном порядке.

В качестве синхросигналов в сети ТСС могут применяться следующие сигналы:

а) цифровой сигнал 2048 кбит/с с кодированием в троичном коде HDB3;
б) гармонический одночастотный сигнал с частотой 2048 кГц;
в) гармонический одночастотный сигнал с частотой 10 МГц или 5 МГц и некоторые другие (8кГц, 64кГц).

Блоки сетевой синхронизации (БСС) или SASE выполняются в соответствии с концепцией построения интегрированных сетей синхронизации, например, в Северной Америке BITS (Building Integrated Timing Supply). Интеграция при построении ТСС предполагает объединение транспортных сетей, сетей доступа, вторичных сетей для поддержки синхронизма. При этом сеть синхронизации должна проектироваться и создаваться как наложенная сеть.

Нормирование частоты проскальзываний введено с рекомендации МСЭ-Т G.822 для стандартного цифрового условного эталонного соединения длиной 27500 км основного цифрового канала 64 кбит/с между абонентскими окончаниями. Это соединение представляет собой соединение двух национальных сетей через несколько международных транзитов и насчитывает в общей сложности до 13 узлов и станций (из них пять центров международной коммутации и на каждой национальной сети по третичному, вторичному и первичному центру коммутации).

В таком соединении может происходить:

а) не более пяти проскальзываний за 24 часа в течение 98,9% времени работы;
б) более пяти проскальзываний за 24 часа, но менее 30 за один час в течение 1 % времени работы;
в) более 30 проскальзываний за один час в течение 0,1% времени работы.

Время работы - не менее одного года.

Качество, обозначенное а), соответствует псевдосинхронному режиму сети.
Качество, обозначенное б), оценивается как пониженное качество, при котором сохраняется трафик.
Качество, обозначенное в), считается неудовлетворительным и соответствует нарушению соединения.

Проскальзывания в явной форме отражаются на качестве услуг электросвязи: